Understanding High-Dimensional Spaces

Understanding High-Dimensional Spaces

AngličtinaMěkká vazbaTisk na objednávku
Skillicorn David B.
Springer, Berlin
EAN: 9783642333972
Tisk na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
1 317 Kč
Běžná cena: 1 463 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. 

There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. 

The book will be of value to practitioners, graduate students and researchers.

EAN 9783642333972
ISBN 3642333974
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 27. září 2012
Stránky 108
Jazyk English
Rozměry 235 x 155
Země Germany
Autoři Skillicorn David B.
Ilustrace IX, 108 p. 29 illus.
Edice 2012 ed.
Série SpringerBriefs in Computer Science