Functional Networks with Applications

Functional Networks with Applications

AngličtinaMěkká vazbaTisk na objednávku
Castillo, Enrique
Springer-Verlag New York Inc.
EAN: 9781461375623
Tisk na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
2 633 Kč
Běžná cena: 2 925 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.
EAN 9781461375623
ISBN 1461375622
Typ produktu Měkká vazba
Vydavatel Springer-Verlag New York Inc.
Datum vydání 11. února 2013
Stránky 309
Jazyk English
Rozměry 235 x 155
Země United States
Sekce Professional & Scholarly
Autoři Antonio Gutierrez, Jose; Castillo, Enrique; Cobo Angel; Pruneda Rosa Eva
Ilustrace XI, 309 p.
Série Springer International Series in Engineering and Computer Science