Recurrent Neural Networks for Prediction

Recurrent Neural Networks for Prediction

AngličtinaPevná vazba
Mandic Danilo P.
John Wiley & Sons Inc
EAN: 9780471495178
Na objednávku
Předpokládané dodání ve čtvrtek, 19. prosince 2024
5 109 Kč
Běžná cena: 5 677 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
  • Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting
  • Examines stability and relaxation within RNNsPresents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation
  • Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration
  • Describes strategies for the exploitation of inherent relationships between parameters in RNNs
  • Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing

Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.

VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE!
http://www.wiley.co.uk/commstech/

VISIT OUR WEB PAGE!
http://www.wiley.co.uk/

EAN 9780471495178
ISBN 0471495174
Typ produktu Pevná vazba
Vydavatel John Wiley & Sons Inc
Datum vydání 6. srpna 2001
Stránky 304
Jazyk English
Rozměry 247 x 174 x 23
Země United States
Sekce Professional & Scholarly
Autoři Chambers, Jonathon A.; Mandic Danilo P.
Série Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control