Decision Tree and Ensemble Learning Based on Ant Colony Optimization

Decision Tree and Ensemble Learning Based on Ant Colony Optimization

AngličtinaPevná vazbaTisk na objednávku
Kozak Jan
Springer, Berlin
EAN: 9783319937519
Tisk na objednávku
Předpokládané dodání v pátek, 14. února 2025
2 633 Kč
Běžná cena: 2 925 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book not only discusses the important topics in the area of machine learning and combinatorial optimization, it also combines them into one. This was decisive for choosing the material to be included in the book and determining its order of presentation.

Decision trees are a popular method of classification as well as of knowledge representation. At the same time, they are easy to implement as the building blocks of an ensemble of classifiers. Admittedly, however, the task of constructing a near-optimal decision tree is a very complex process.

The good results typically achieved by the ant colony optimization algorithms when dealing with combinatorial optimization problems suggest the possibility of also using that approach for effectively constructing decision trees. The underlying rationale is that both problem classes can be presented as graphs. This fact leads to option of considering a larger spectrum of solutions than those based on the heuristic. Moreover, ant colony optimization algorithms can be used to advantage when building ensembles of classifiers.

This book is a combination of a research monograph and a textbook. It can be used in graduate courses, but is also of interest to researchers, both specialists in machine learning and those applying machine learning methods to cope with problems from any field of R&D.

EAN 9783319937519
ISBN 3319937510
Typ produktu Pevná vazba
Vydavatel Springer, Berlin
Datum vydání 5. července 2018
Stránky 159
Jazyk English
Rozměry 235 x 155
Země Switzerland
Sekce General
Autoři Kozak Jan
Ilustrace XI, 159 p. 44 illus.
Edice 1st ed. 2019
Série Studies in Computational Intelligence