Mathematical Foundation of Turbulent Viscous Flows

Mathematical Foundation of Turbulent Viscous Flows

AngličtinaEbook
Constantin, Peter
Springer Berlin Heidelberg
EAN: 9783540324546
Dostupné online
1 262 Kč
Běžná cena: 1 402 Kč
Sleva 10 %
ks

Podrobné informace

Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.
EAN 9783540324546
ISBN 3540324542
Typ produktu Ebook
Vydavatel Springer Berlin Heidelberg
Datum vydání 24. listopadu 2005
Jazyk English
Země Germany
Autoři Constantin, Peter; Gallavotti, Giovanni; Kazhikhov, Alexandre V.; Meyer, Yves; Ukai, Seiji
Editoři Cannone, Marco; Miyakawa, Tetsuro
Série Lecture Notes in Mathematics