Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets

AngličtinaMěkká vazbaTisk na objednávku
Fernández, Alberto
Springer, Berlin
EAN: 9783030074463
Tisk na objednávku
Předpokládané dodání v pondělí, 10. února 2025
3 949 Kč
Běžná cena: 4 388 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

EAN 9783030074463
ISBN 3030074463
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 19. ledna 2019
Stránky 377
Jazyk English
Rozměry 235 x 155
Země Switzerland
Sekce General
Autoři Fernandez, Alberto; Galar, Mikel; Garcia, Salvador; Herrera Francisco; Krawczyk, Bartosz; Prati, Ronaldo C.
Ilustrace XVIII, 377 p. 71 illus., 50 illus. in color.
Edice Softcover reprint of the original 1st ed. 2018