Time Changes of the Brownian Motion: Poincare Inequality, Heat Kernel Estimate and Protodistance

Time Changes of the Brownian Motion: Poincare Inequality, Heat Kernel Estimate and Protodistance

AngličtinaMěkká vazba
Kigami Jun
American Mathematical Society
EAN: 9781470436209
Na objednávku
Předpokládané dodání ve čtvrtek, 13. února 2025
2 102 Kč
Běžná cena: 2 336 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including $n$-dimensional cube $[0, 1]^n$ are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on $[0, 1]^n$, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such as Liouville measures on $[0, 1]^2$ and self-similar measures.

The author shows the existence of time changed process and associated jointly continuous heat kernel for this class of measures. Furthermore, he obtains diagonal lower and upper estimates of the heat kernel as time tends to $0$. In particular, to express the principal part of the lower diagonal heat kernel estimate, he introduces ``protodistance'' associated with the density as a substitute of ordinary metric. If the density has the volume doubling property with respect to the Euclidean metric, the protodistance is shown to produce metrics under which upper off-diagonal sub-Gaussian heat kernel estimate and lower near diagonal heat kernel estimate will be shown.
EAN 9781470436209
ISBN 1470436205
Typ produktu Měkká vazba
Vydavatel American Mathematical Society
Datum vydání 30. července 2019
Stránky 118
Jazyk English
Rozměry 254 x 178
Země United States
Autoři Kigami Jun
Série Memoirs of the American Mathematical Society