Statistics, Data Mining, and Machine Learning in Astronomy

Statistics, Data Mining, and Machine Learning in Astronomy

AngličtinaPevná vazba
Ivezic Zeljko
Princeton University Press
EAN: 9780691198309
Na objednávku
Předpokládané dodání v pátek, 10. ledna 2025
2 191 Kč
Běžná cena: 2 434 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.

An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.

  • Fully revised and expanded
  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
  • Features real-world data sets from astronomical surveys
  • Uses a freely available Python codebase throughout
  • Ideal for graduate students, advanced undergraduates, and working astronomers
EAN 9780691198309
ISBN 0691198306
Typ produktu Pevná vazba
Vydavatel Princeton University Press
Datum vydání 3. prosince 2019
Stránky 560
Jazyk English
Rozměry 254 x 178
Země United States
Autoři Connolly Andrew J.; Gray Alexander; Ivezic Zeljko; VanderPlas, Jacob T.
Ilustrace 12 color + 187 b/w illus. 13 tables
Edice Revised ed
Série Princeton Series in Modern Observational Astronomy