The Reinforcement Learning Workshop

The Reinforcement Learning Workshop

AngličtinaMěkká vazba
Palmas, Alessandro
Packt Publishing Limited
EAN: 9781800200456
Na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
1 168 Kč
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide

Key Features
  • Use TensorFlow to write reinforcement learning agents for performing challenging tasks
  • Learn how to solve finite Markov decision problems
  • Train models to understand popular video games like Breakout
Book Description

Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models.

Starting with an introduction to RL, you’ll be guided through different RL environments and frameworks. You’ll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you’ve explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you’ll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you’ll find out when to use a policy-based method to tackle an RL problem.

By the end of The Reinforcement Learning Workshop, you’ll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.

What you will learn
  • Use OpenAI Gym as a framework to implement RL environments
  • Find out how to define and implement reward function
  • Explore Markov chain, Markov decision process, and the Bellman equation
  • Distinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning
  • Understand the multi-armed bandit problem and explore various strategies to solve it
  • Build a deep Q model network for playing the video game Breakout
Who this book is for

If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.

EAN 9781800200456
ISBN 1800200455
Typ produktu Měkká vazba
Vydavatel Packt Publishing Limited
Datum vydání 18. srpna 2020
Stránky 822
Jazyk English
Rozměry 93 x 75
Země United Kingdom
Autoři Basak, Saikat; Ghelfi, Emanuele; Kulkarni, Mayur; N.S., Anand; Nguyen, Quan; Palmas, Alessandro; Petre, Dr. Alexandra Galina; Sen, Aritra; So, Anthony