Gene Expression Data Analysis

Gene Expression Data Analysis

AngličtinaPevná vazba
Barah, Pankaj
Taylor & Francis Ltd
EAN: 9780367338893
Na objednávku
Předpokládané dodání v pondělí, 13. ledna 2025
4 235 Kč
Běžná cena: 4 705 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge.

Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data.

Key Features:

  • An introduction to the Central Dogma of molecular biology and information flow in biological systems
  • A systematic overview of the methods for generating gene expression data
  • Background knowledge on statistical modeling and machine learning techniques
  • Detailed methodology of analyzing gene expression data with an example case study
  • Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data
  • A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns
  • Suitable for multidisciplinary researchers and practitioners in computer science and biological sciences
EAN 9780367338893
ISBN 0367338890
Typ produktu Pevná vazba
Vydavatel Taylor & Francis Ltd
Datum vydání 22. listopadu 2021
Stránky 360
Jazyk English
Rozměry 234 x 156
Země United Kingdom
Autoři Barah, Pankaj; Bhattacharyya Dhruba Kumar; Kalita Jugal Kumar
Ilustrace 42 Tables, black and white; 68 Line drawings, black and white; 2 Halftones, black and white; 70 Illustrations, black and white