Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems

Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems

AngličtinaMěkká vazba
Ingham, D. B.
Springer, Berlin
EAN: 9783540136460
Na objednávku
Předpokládané dodání v pondělí, 10. února 2025
2 633 Kč
Běžná cena: 2 925 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field.
EAN 9783540136460
ISBN 3540136460
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 1. srpna 1984
Stránky 173
Jazyk English
Rozměry 244 x 170
Země Germany
Sekce Professional & Scholarly
Autoři Ingham, D. B.; Kelmanson M. A.
Ilustrace IV, 173 p.
Edice Softcover reprint of the original 1st ed. 1984
Série Lecture Notes in Engineering