Cohesive Subgraph Search Over Large Heterogeneous Information Networks

Cohesive Subgraph Search Over Large Heterogeneous Information Networks

AngličtinaMěkká vazbaTisk na objednávku
Fang, Yixiang
Springer, Berlin
EAN: 9783030975678
Tisk na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
1 184 Kč
Běžná cena: 1 316 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.

The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.

This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.

EAN 9783030975678
ISBN 3030975673
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 7. května 2022
Stránky 74
Jazyk English
Rozměry 235 x 155
Země Switzerland
Sekce Professional & Scholarly
Autoři Fang, Yixiang; Lin Xuemin; Wang Kai; Zhang Wenjie
Ilustrace XIX, 74 p. 20 illus., 5 illus. in color.
Edice 1st ed. 2022
Série SpringerBriefs in Computer Science