Deep Learning in Solar Astronomy

Deep Learning in Solar Astronomy

AngličtinaMěkká vazbaTisk na objednávku
Xu Long
Springer Verlag, Singapore
EAN: 9789811927454
Tisk na objednávku
Předpokládané dodání v pátek, 3. ledna 2025
1 448 Kč
Běžná cena: 1 609 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition.

Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices.

This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

EAN 9789811927454
ISBN 9811927456
Typ produktu Měkká vazba
Vydavatel Springer Verlag, Singapore
Datum vydání 28. května 2022
Stránky 92
Jazyk English
Rozměry 235 x 155
Země Singapore
Sekce Professional & Scholarly
Autoři Huang Xin; Xu Long; Yan Yihua
Ilustrace XIV, 92 p. 1 illus.
Edice 1st ed. 2022
Série SpringerBriefs in Computer Science