Deep Learning for Computer Architects

Deep Learning for Computer Architects

AngličtinaMěkká vazbaTisk na objednávku
Reagen, Brandon
Springer, Berlin
EAN: 9783031006289
Tisk na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
1 448 Kč
Běžná cena: 1 609 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware.

This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs.

The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

EAN 9783031006289
ISBN 3031006283
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 22. srpna 2017
Stránky 109
Jazyk English
Rozměry 235 x 191
Země Switzerland
Sekce Professional & Scholarly
Autoři Adolf, Robert; Brooks, David; Reagen, Brandon; Wei Gu-Yeon; Whatmough, Paul
Ilustrace XIV, 109 p.
Série Synthesis Lectures on Computer Architecture