Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems

Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems

AngličtinaPevná vazbaTisk na objednávku
Wang, Yinpeng
Taylor & Francis Ltd
EAN: 9781032502984
Tisk na objednávku
Předpokládané dodání v pátek, 13. prosince 2024
2 278 Kč
Běžná cena: 2 531 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.

Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.

As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.

EAN 9781032502984
ISBN 1032502983
Typ produktu Pevná vazba
Vydavatel Taylor & Francis Ltd
Datum vydání 6. července 2023
Stránky 180
Jazyk English
Rozměry 234 x 156
Země United Kingdom
Sekce General
Autoři Ren Qiang; Wang, Yinpeng
Ilustrace 14 Tables, black and white; 83 Line drawings, black and white; 54 Halftones, black and white; 137 Illustrations, black and white