Bayesian Nonparametrics for Causal Inference and Missing Data

Bayesian Nonparametrics for Causal Inference and Missing Data

AngličtinaPevná vazbaTisk na objednávku
Daniels Michael J.
Taylor & Francis Ltd
EAN: 9780367341008
Tisk na objednávku
Předpokládané dodání v pátek, 31. ledna 2025
2 687 Kč
Běžná cena: 2 985 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.

The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.

Features

• Thorough discussion of both BNP and its interplay with causal inference and missing data

• How to use BNP and g-computation for causal inference and non-ignorable missingness

• How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions

• Detailed case studies illustrating the application of BNP methods to causal inference and missing data

• R code and/or packages to implement BNP in causal inference and missing data problems

The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

EAN 9780367341008
ISBN 036734100X
Typ produktu Pevná vazba
Vydavatel Taylor & Francis Ltd
Datum vydání 23. srpna 2023
Stránky 248
Jazyk English
Rozměry 234 x 156
Země United Kingdom
Autoři Daniels Michael J.; Linero, Antonio; Roy Jason
Ilustrace 8 Tables, black and white; 42 Line drawings, black and white; 42 Illustrations, black and white
Série Chapman & Hall/CRC Monographs on Statistics and Applied Probability