Real Mathematical Analysis

Real Mathematical Analysis

AngličtinaPevná vazbaTisk na objednávku
Pugh Charles Chapman
Springer, Berlin
EAN: 9783319177700
Tisk na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
1 184 Kč
Běžná cena: 1 316 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis.

New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points — which are rarely treated in books at this level — and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.

EAN 9783319177700
ISBN 3319177702
Typ produktu Pevná vazba
Vydavatel Springer, Berlin
Datum vydání 10. října 2017
Stránky 478
Jazyk English
Rozměry 254 x 178
Země Switzerland
Sekce Professional & Scholarly
Autoři Pugh Charles Chapman
Ilustrace 1 Illustrations, color; XI, 478 p. 1 illus. in color.
Edice 2nd ed. 2015, Corr. 2nd printing 2017
Série Undergraduate Texts in Mathematics