Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes

Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes

AngličtinaEbook
Positselski, Leonid
Springer Nature Switzerland
EAN: 9783031379055
Dostupné online
3 386 Kč
Běžná cena: 3 762 Kč
Sleva 10 %
ks

Podrobné informace

Semi-Infinite Geometry is a theory of &quote;doubly infinite-dimensional&quote; geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled Homological Algebra of Semimodules and Semicontramodules, (Birkhauser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent torsion sheaves and flat pro-quasi-coherent pro-sheaves on ind-schemes are discussed at length in this book, making it suitable for use as an introduction to the theory of quasi-coherent sheaves on ind-schemes. The main output of the homological theory developed in this monograph is the functor of semitensor product on the semiderived category of quasi-coherent torsion sheaves, endowing the semiderived category with the structure of a tensor triangulated category.  The author offers two equivalent constructions of the semitensorproduct, as well as its particular case, the cotensor product, and shows that they enjoy good invariance properties. Several geometric examples are discussed in detail in the book, including the cotangent bundle to an infinite-dimensional projective space, the universal fibration of quadratic cones, and the important popular example of the loop group of an affine algebraic group.
EAN 9783031379055
ISBN 3031379055
Typ produktu Ebook
Vydavatel Springer Nature Switzerland
Datum vydání 14. září 2023
Jazyk English
Autoři Positselski, Leonid
Informace o výrobci
Kontaktní informace výrobce nejsou momentálně dostupné online, na nápravě intenzivně pracujeme. Pokud informaci potřebujete, napište nám na info@megabooks.cz, rádi Vám ji poskytneme.