Order Analysis, Deep Learning, and Connections to Optimization

Order Analysis, Deep Learning, and Connections to Optimization

AngličtinaPevná vazbaTisk na objednávku
Jahn Johannes
Springer, Berlin
EAN: 9783031674211
Tisk na objednávku
Předpokládané dodání v pátek, 28. února 2025
3 159 Kč
Běžná cena: 3 510 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book introduces readers to order analysis and various aspects of deep learning, and describes important connections to optimization, such as nonlinear optimization as well as vector and set optimization. Besides a review of the essentials, this book consists of two main parts.
The first main part focuses on the introduction of order analysis as an application-driven theory, which allows to treat order structures with an analytical approach. Applications of order analysis to nonlinear optimization, as well as vector and set optimization with fixed and variable order structures, are discussed in detail. This means there are close ties to finance, operations research, and multicriteria decision making.
Deep learning is the subject of the second main part of this book. In addition to the usual basics, the focus is on gradient methods, which are investigated in the context of complex models with a large number of parameters. And a new fast variant of a gradient method is presented in this part. Finally, the deep learning approach is extended to data sets given by set-valued data. Although this set-valued approach is more computationally intensive, it has the advantage of producing more robust predictions.
This book is primarily intended for researchers in the fields of optimization, order theory, or artificial intelligence (AI), but it will also benefit graduate students with a general interest in these fields. The book assumes that readers have a basic understanding of functional analysis or at least basic analysis. By unifying and streamlining existing approaches, this work will also appeal to professionals seeking a comprehensive and straightforward perspective on AI or order theory approaches.

EAN 9783031674211
ISBN 3031674219
Typ produktu Pevná vazba
Vydavatel Springer, Berlin
Datum vydání 23. října 2024
Stránky 181
Jazyk English
Rozměry 235 x 155
Země Switzerland
Autoři Jahn Johannes
Ilustrace XIX, 181 p. 64 illus., 63 illus. in color.
Edice 2024 ed.
Série Vector Optimization