Artificial Intelligence Techniques for Analysing Sensitive Data in Medical Cyber-Physical Systems

Artificial Intelligence Techniques for Analysing Sensitive Data in Medical Cyber-Physical Systems

AngličtinaPevná vazba
Springer, Berlin
EAN: 9783031707742
Očekáváme vydání titulu
Předpokládané dodání v pátek, 14. března 2025
4 476 Kč
Běžná cena: 4 973 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book presents the major advances in techniques to preserve privacy and security requirements connected with the use of AI and machine learning (ML) to analyse and manage sensitive data in MCPSs. The advances in Internet of things and artificial intelligence (AI) have witnessed great progress on healthcare technologies in several application domains. In particular, the interconnection between the physical spaces, characterized by physical devices able to collect users’ health information, with the cyberspace, also known as the virtual space, has fostered the development of intelligent Medical Cyber-Physical Systems (MCPSs) with the capability to deliver real-time healthcare services. On the other hand, the potential innovation that these technologies bring to improve patient care, by remotely analysing health parameters using medical devices, advanced smart sensors, and AI, is hampered by security and privacy challenges related to the managed sensitive data. 

Starting from the state of the art on AI and ML for medical applications and digital health, an accurate analysis of privacy and security risks associated with the use of the MCPSs is presented. Then, Digital Twins are introduced as a significant technique to enhance decision-making through learning and reasoning of collected on-field real-time data. Moreover, decentralized healthcare data management approaches based on federated learning, tiny machine learning, and blockchain technologies have been introduced to shift control and responsibility of healthcare data management from individual centralized entities to a more distributed structure, preserving privacy and security. Finally, the application of AI-based security monitoring approaches in healthcare is discussed. 

In this book, both theoretical and practical approaches are used to allow readers to understand complex topics and concepts easily also through real-life scenarios.

EAN 9783031707742
ISBN 3031707745
Typ produktu Pevná vazba
Vydavatel Springer, Berlin
Datum vydání 7. února 2025
Stránky 168
Jazyk English
Rozměry 235 x 155
Země Switzerland
Ilustrace X, 240 p.
Editoři D'Angelo, Gianni; Ficco, Massimo
Edice 2024 ed.
Série Engineering Cyber-Physical Systems and Critical Infrastructures