Capacities in Complex Analysis

Capacities in Complex Analysis

AngličtinaMěkká vazba
Cegrell Urban
Vieweg+Teubner
EAN: 9783528063351
Titul je vyprodán u vydavatele, prodej skončil
Neznámé datum dodání
1 354 Kč
Běžná cena: 1 504 Kč
Sleva 10 %
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The purpose of this book is to study plurisubharmonic and analytic functions in ~n using capacity theory. The case n=l has been studied for a long time and is very well understood. The theory has been generalized to mn and the results are in many cases similar to the situation in ~. However, these results are not so well adapted to complex analysis in several variables - they are more related to harmonic than plurihar monic functions. Capacities can be thought of as a non-linear generali zation of measures; capacities are set functions and many of the capacities considered here can be obtained as envelopes of measures. In the mn theory, the link between functions and capa cities is often the Laplace operator - the corresponding link in the ~n theory is the complex Monge-Ampere operator. This operator is non-linear (it is n-linear) while the Laplace operator is linear. This explains why the theories in mn and ~n differ considerably. For example, the sum of two harmonic functions is harmonic, but it can happen that the sum of two plurisubharmonic functions has positive Monge-Ampere mass while each of the two functions has vanishing Monge-Ampere mass. To give an example of similarities and differences, consider the following statements. Assume first that ~ is an open subset VIII of ~n and that K is a closed subset of Q. Consider the following properties that K mayor may not have.
EAN 9783528063351
ISBN 3528063351
Typ produktu Měkká vazba
Vydavatel Vieweg+Teubner
Datum vydání 1. ledna 1988
Stránky 156
Jazyk English
Rozměry 235 x 155
Země Germany
Sekce Professional & Scholarly
Autoři Cegrell Urban
Ilustrace XI, 156 S.
Série Aspects of Mathematics