Event Detection in Time Series

Event Detection in Time Series

AngličtinaPevná vazba
Ogasawara, Eduardo
Springer, Berlin
EAN: 9783031759406
Očekáváme vydání titulu
Předpokládané dodání v pátek, 28. března 2025
1 053 Kč
Běžná cena: 1 170 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics.

EAN 9783031759406
ISBN 3031759400
Typ produktu Pevná vazba
Vydavatel Springer, Berlin
Datum vydání 15. února 2025
Stránky 178
Jazyk English
Rozměry 240 x 168
Země Switzerland
Autoři Ogasawara, Eduardo; Pacitti Esther; Porto, Fábio; Salles, Rebecca
Ilustrace XII, 178 p. 65 illus., 53 illus. in color.
Edice 2025 ed.
Série Synthesis Lectures on Data Management