Analytic Number Theory And Algebraic Asymptotic Analysis

Analytic Number Theory And Algebraic Asymptotic Analysis

AngličtinaPevná vazba
Elliott Jesse
World Scientific Publishing Co Pte Ltd
EAN: 9789811280535
Pouze na doptání
Titul není běžně dostupný – individuálně pro vás ověříme jeho dostupnost a cenu.
Cenu a termín pro vás ověříme
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Dostupné formáty

Podrobné informace

This monograph elucidates and extends many theorems and conjectures in analytic number theory and algebraic asymptotic analysis via the natural notions of degree and logexponential degree. The Riemann hypothesis, for example, is equivalent to the statement that the degree of the function π(x) - li(x) is ½, where π(x) is the prime counting function and li(x) is the logarithmic integral function. Part 1 of the text is a survey of analytic number theory, Part 2 introduces the notion of logexponential degree and uses it to extend results in algebraic asymptotic analysis, and Part 3 applies the results of Part 2 to the various functions that figure most prominently in analytic number theory.Central to the notion of logexponential degree are G H Hardy's logarithmico-exponential functions, which are real functions defined in a neighborhood of ∞ that can be built from id, exp, and log using the operations +, ·, /, and °. Such functions are natural benchmarks for the orders of growth of functions in analytic number theory. The main goal of Part 3 is to express the logexponential degree of various functions in analytic number theory in terms of as few 'logexponential primitives' as possible. The logexponential degree of the function eγπp≤x(1-⅟p) - ⅟log x, for example, can be expressed in terms of that of π(x) - li(x) and vice versa (where γ ≈ 0.5772 is the Euler-Mascheroni constant), despite the fact that very little is known about the logexponential degree of either function separately, even on condition of the Riemann hypothesis.
EAN 9789811280535
ISBN 9811280533
Typ produktu Pevná vazba
Vydavatel World Scientific Publishing Co Pte Ltd
Datum vydání 16. července 2025
Stránky 780
Jazyk English
Země Singapore
Autoři Elliott Jesse
Série Monographs In Number Theory
Informace o výrobci
Kontaktní informace výrobce nejsou momentálně dostupné online, na nápravě intenzivně pracujeme. Pokud informaci potřebujete, napište nám na info@megabooks.cz, rádi Vám ji poskytneme.