Generative Complexity in Algebra

Generative Complexity in Algebra

AngličtinaMěkká vazba
American Mathematical Society
EAN: 9780821837078
Titul je vyprodán u vydavatele, prodej skončil
Neznámé datum dodání
1 957 Kč
Běžná cena: 2 174 Kč
Sleva 10 %
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The G-spectrum or generative complexity of a class $\mathcal{C}$ of algebraic structures is the function $\mathrm{G}_\mathcal{C}(k)$ that counts the number of non-isomorphic models in $\mathcal{C}$ that are generated by at most $k$ elements. We consider the behavior of $\mathrm{G}_\mathcal{C}(k)$ when $\mathcal{C}$ is a locally finite equational class (variety) of algebras and $k$ is finite. We are interested in ways that algebraic properties of $\mathcal{C}$ lead to upper or lower bounds on generative complexity.Some of our results give sharp upper and lower bounds so as to place a particular variety or class of varieties at a precise level in an exponential hierarchy. We say $\mathcal{C}$ has many models if there exists $c>0$ such that $\mathrm{G}_\mathcal{C}(k) \ge 2^{2^{ck}}$ for all but finitely many $k$, $\mathcal{C}$ has few models if there is a polynomial $p(k)$ with $\mathrm{G}_\mathcal{C}(k) \le 2^{p(k)}$, and $\mathcal{C}$ has very few models if $\mathrm{G}_\mathcal{C}(k)$ is bounded above by a polynomial in $k$.Much of our work is motivated by a desire to know which locally finite varieties have few or very few models, and to discover conditions that force a variety to have many models. We present characterization theorems for a very broad class of varieties including most known and well-studied types of algebras, such as groups, rings, modules, lattices. Two main results of our work are: a full characterization of locally finite varieties omitting the tame congruence theory type 1 with very few models as the affine varieties over a ring of finite representation type, and a full characterization of finitely generated varieties omitting type 1 with few models. In particular, we show that a finitely generated variety of groups has few models if and only if it is nilpotent and has very few models if and only if it is Abelian.
EAN 9780821837078
ISBN 0821837079
Typ produktu Měkká vazba
Vydavatel American Mathematical Society
Datum vydání 30. března 2005
Stránky 159
Jazyk English
Země United States
Sekce Professional & Scholarly
Série Memoirs of the American Mathematical Society