Recursive Partitioning and Applications

Recursive Partitioning and Applications

AngličtinaPevná vazbaTisk na objednávku
Zhang Heping
Springer-Verlag New York Inc.
EAN: 9781441968234
Tisk na objednávku
Předpokládané dodání v pátek, 21. února 2025
2 896 Kč
Běžná cena: 3 218 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e?ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e?ectiveness of a relatively recently developed methodology—recursive partitioning—as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where—and for what kinds of questions—recursive partitioning–based strategies have a decisive advantage over classical regression techniques.
EAN 9781441968234
ISBN 1441968237
Typ produktu Pevná vazba
Vydavatel Springer-Verlag New York Inc.
Datum vydání 19. července 2010
Stránky 262
Jazyk English
Rozměry 235 x 155
Země United States
Sekce Professional & Scholarly
Autoři Singer Burton H.; Zhang Heping
Ilustrace XIV, 262 p.
Edice 2nd ed. 2010
Série Springer Series in Statistics