Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis

Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis

AngličtinaMěkká vazbaTisk na objednávku
Laumon, Gérard
Cambridge University Press
EAN: 9780521172745
Tisk na objednávku
Předpokládané dodání ve čtvrtek, 30. ledna 2025
1 518 Kč
Běžná cena: 1 687 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.
EAN 9780521172745
ISBN 0521172748
Typ produktu Měkká vazba
Vydavatel Cambridge University Press
Datum vydání 9. prosince 2010
Stránky 360
Jazyk English
Rozměry 229 x 152 x 20
Země United Kingdom
Autoři Laumon, Gerard
Ilustrace Worked examples or Exercises
Série Cambridge Studies in Advanced Mathematics