Entropy Measures, Maximum Entropy Principle and Emerging Applications

Entropy Measures, Maximum Entropy Principle and Emerging Applications

AngličtinaMěkká vazbaTisk na objednávku
Springer, Berlin
EAN: 9783642055317
Tisk na objednávku
Předpokládané dodání v pátek, 7. března 2025
5 266 Kč
Běžná cena: 5 851 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The last two decades have witnessed an enormous growth with regard to ap­ plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac­ ular in the field of information technology,soft computing,nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in­ deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan­ non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face". Shannon introduced the concept of entropy. The notable feature of the entropy frame­ work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc. ; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba­ sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge.
EAN 9783642055317
ISBN 3642055311
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 15. prosince 2010
Stránky 297
Jazyk English
Rozměry 235 x 155
Země Germany
Sekce Professional & Scholarly
Ilustrace X, 297 p.
Editoři Karmeshu
Edice Softcover reprint of the original 1st ed. 2003
Série Studies in Fuzziness and Soft Computing