Mathematical Asects of Classical and Celestial Mechanics

Mathematical Asects of Classical and Celestial Mechanics

AngličtinaMěkká vazba
Arnold Vladimir I.
Springer, Berlin
EAN: 9783642066474
Na objednávku
Předpokládané dodání v pátek, 10. ledna 2025
5 821 Kč
Běžná cena: 6 468 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

In this book we describe the basic principles, problems, and methods of cl- sical mechanics. Our main attention is devoted to the mathematical side of the subject. Although the physical background of the models considered here and the applied aspects of the phenomena studied in this book are explored to a considerably lesser extent, we have tried to set forth ?rst and foremost the “working” apparatus of classical mechanics. This apparatus is contained mainly in Chapters 1, 3, 5, 6, and 8. Chapter 1 is devoted to the basic mathematical models of classical - chanics that are usually used for describing the motion of real mechanical systems. Special attention is given to the study of motion with constraints and to the problems of realization of constraints in dynamics. In Chapter 3 we discuss symmetry groups of mechanical systems and the corresponding conservation laws. We also expound various aspects of ord- reduction theory for systems with symmetries, which is often used in appli- tions. Chapter 4 is devoted to variational principles and methods of classical mechanics. They allow one, in particular, to obtain non-trivial results on the existence of periodic trajectories. Special attention is given to the case where the region of possible motion has a non-empty boundary. Applications of the variational methods to the theory of stability of motion are indicated.
EAN 9783642066474
ISBN 364206647X
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 13. listopadu 2010
Stránky 505
Jazyk English
Rozměry 235 x 155
Země Germany
Sekce Professional & Scholarly
Autoři Arnold Vladimir I.; Kozlov Valery V.; Neishtadt Anatoly I.
Ilustrace XIII, 505 p.
Překladatelé Khukhro E.
Edice Softcover reprint of hardcover 3rd ed. 2006
Série Encyclopaedia of Mathematical Sciences