Transfer in Reinforcement Learning Domains

Transfer in Reinforcement Learning Domains

AngličtinaMěkká vazba
Taylor, Matthew
Springer, Berlin
EAN: 9783642101861
Na objednávku
Předpokládané dodání ve středu, 7. května 2025
2 633 Kč
Běžná cena: 2 925 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow or infeasible when RL agents begin with no prior knowledge. The key insight behind "transfer learning" is that generalization may occur not only within tasks, but also across tasks. While transfer has been studied in the psychological literature for many years, the RL community has only recently begun to investigate the benefits of transferring knowledge. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research.

The key contributions of this book are:

    • Definition of the transfer problem in RL domains
    • Background on RL, sufficient to allow a wide audience to understand discussed transfer concepts
    • Taxonomy for transfer methods in RL
    • Survey of existing approaches
    • In-depth presentation of selected transfer methods
    • Discussion of key open questions

By way of the research presented in this book, the author has established himself as the pre-eminent worldwide expert on transfer learning in sequential decision making tasks. A particular strength of the research is its very thorough and methodical empirical evaluation, which Matthew presents, motivates, and analyzes clearly in prose throughout the book. Whether this is your initial introduction to the concept of transfer learning, or whether you are a practitioner in the field looking for nuanced details, I trust that you will find this book to be an enjoyable and enlightening read.

Peter Stone, Associate Professor of Computer Science

EAN 9783642101861
ISBN 3642101860
Typ produktu Měkká vazba
Vydavatel Springer, Berlin
Datum vydání 27. října 2010
Stránky 230
Jazyk English
Rozměry 235 x 155
Země Germany
Sekce Professional & Scholarly
Autoři Taylor, Matthew
Ilustrace XII, 230 p.
Edice Softcover reprint of hardcover 1st ed. 2009
Série Studies in Computational Intelligence
Informace o výrobci
Kontaktní informace výrobce nejsou momentálně dostupné online, na nápravě intenzivně pracujeme. Pokud informaci potřebujete, napište nám na info@megabooks.cz, rádi Vám ji poskytneme.