Stochastic Approximation and Recursive Algorithms and Applications

Stochastic Approximation and Recursive Algorithms and Applications

AngličtinaPevná vazba
Kushner Harold
Springer-Verlag New York Inc.
EAN: 9780387008943
Na objednávku
Předpokládané dodání v pondělí, 27. ledna 2025
5 266 Kč
Běžná cena: 5 851 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The basic stochastic approximation algorithms introduced by Robbins and MonroandbyKieferandWolfowitzintheearly1950shavebeenthesubject of an enormous literature, both theoretical and applied. This is due to the large number of applications and the interesting theoretical issues in the analysis of “dynamically de?ned” stochastic processes. The basic paradigm is a stochastic di?erence equation such as ? = ? + Y , where ? takes n+1 n n n n its values in some Euclidean space, Y is a random variable, and the “step n size” > 0 is small and might go to zero as n??. In its simplest form, n ? is a parameter of a system, and the random vector Y is a function of n “noise-corrupted” observations taken on the system when the parameter is set to ? . One recursively adjusts the parameter so that some goal is met n asymptotically. Thisbookisconcernedwiththequalitativeandasymptotic properties of such recursive algorithms in the diverse forms in which they arise in applications. There are analogous continuous time algorithms, but the conditions and proofs are generally very close to those for the discrete time case. The original work was motivated by the problem of ?nding a root of a continuous function g ¯(?), where the function is not known but the - perimenter is able to take “noisy” measurements at any desired value of ?. Recursive methods for root ?nding are common in classical numerical analysis, and it is reasonable to expect that appropriate stochastic analogs would also perform well.
EAN 9780387008943
ISBN 0387008942
Typ produktu Pevná vazba
Vydavatel Springer-Verlag New York Inc.
Datum vydání 17. července 2003
Stránky 478
Jazyk English
Rozměry 234 x 155
Země United States
Sekce Professional & Scholarly
Autoři Kushner Harold; Yin G. George
Ilustrace XXII, 478 p.
Edice 2nd ed. 2003
Série Stochastic Modelling and Applied Probability