Variable Lebesgue Spaces and Hyperbolic Systems

Variable Lebesgue Spaces and Hyperbolic Systems

AngličtinaMěkká vazba
Cruz-Uribe, David
Springer, Basel
EAN: 9783034808392
Na objednávku
Předpokládané dodání v pátek, 20. prosince 2024
658 Kč
Běžná cena: 731 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts.

Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted.

Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.

EAN 9783034808392
ISBN 3034808399
Typ produktu Měkká vazba
Vydavatel Springer, Basel
Datum vydání 5. srpna 2014
Stránky 170
Jazyk English
Rozměry 240 x 168
Země Switzerland
Sekce Professional & Scholarly
Autoři Cruz-Uribe, David; Fiorenza Alberto; Ruzhansky, Michael; Wirth Jens
Ilustrace IX, 170 p. 5 illus.
Editoři Tikhonov Sergey
Série Advanced Courses in Mathematics - CRM Barcelona