Statistical Foundations of Data Science

Statistical Foundations of Data Science

AngličtinaPevná vazba
Fan Jianqing
Taylor & Francis Inc
EAN: 9781466510845
Na objednávku
Předpokládané dodání v pondělí, 13. ledna 2025
3 212 Kč
Běžná cena: 3 569 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications.

The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

EAN 9781466510845
ISBN 1466510846
Typ produktu Pevná vazba
Vydavatel Taylor & Francis Inc
Datum vydání 17. srpna 2020
Stránky 774
Jazyk English
Rozměry 234 x 156
Země United States
Sekce General
Autoři Fan Jianqing; Li Runze; Zhang Cun-Hui; Zou, Hui
Ilustrace 100 Illustrations, black and white
Série Chapman & Hall/CRC Data Science Series