Lectures on the Arthur-Selberg Trace Formula

Lectures on the Arthur-Selberg Trace Formula

AngličtinaMěkká vazba
Gelbart Stephen S.
American Mathematical Society
EAN: 9780821805718
Titul je vyprodán u vydavatele, prodej skončil
Neznámé datum dodání
657 Kč
Běžná cena: 730 Kč
Sleva 10 %
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as 'weighted' orbital and 'weighted' characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula.This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. It discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. It brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. It explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). It outlines Jacquet's trace formula and shows how it works for $GL$(2).
EAN 9780821805718
ISBN 0821805711
Typ produktu Měkká vazba
Vydavatel American Mathematical Society
Datum vydání 30. srpna 1996
Stránky 99
Jazyk English
Rozměry 253 x 177 x 7
Země United States
Sekce Professional & Scholarly
Autoři Gelbart Stephen S.
Série University Lecture Series