Knowledge Discovery and Measures of Interest

Knowledge Discovery and Measures of Interest

AngličtinaMěkká vazbaTisk na objednávku
Hilderman Robert J.
Springer-Verlag New York Inc.
EAN: 9781441949134
Tisk na objednávku
Předpokládané dodání v pátek, 14. února 2025
1 317 Kč
Běžná cena: 1 463 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Knowledge Discovery and Measures of Interest is a reference book for knowledge discovery researchers, practitioners, and students. The knowledge discovery researcher will find that the material provides a theoretical foundation for measures of interest in data mining applications where diversity measures are used to rank summaries generated from databases. The knowledge discovery practitioner will find solid empirical evidence on which to base decisions regarding the choice of measures in data mining applications. The knowledge discovery student in a senior undergraduate or graduate course in databases and data mining will find the book is a good introduction to the concepts and techniques of measures of interest.
In Knowledge Discovery and Measures of Interest, we study two closely related steps in any knowledge discovery system: the generation of discovered knowledge; and the interpretation and evaluation of discovered knowledge. In the generation step, we study data summarization, where a single dataset can be generalized in many different ways and to many different levels of granularity according to domain generalization graphs. In the interpretation and evaluation step, we study diversity measures as heuristics for ranking the interestingness of the summaries generated.
The objective of this work is to introduce and evaluate a technique for ranking the interestingness of discovered patterns in data. It consists of four primary goals:
  • To introduce domain generalization graphs for describing and guiding the generation of summaries from databases.
  • To introduce and evaluate serial and parallel algorithms that traverse the domain generalization space described by the domain generalization graphs.
  • To introduce and evaluate diversity measures as heuristic measures of interestingness for ranking summaries generated from databases.
  • To develop the preliminary foundation for a theory of interestingness within the context of ranking summaries generated from databases.
Knowledge Discovery and Measures of Interest is suitable as a secondary text in a graduate level course and as a reference for researchers and practitioners in industry.
EAN 9781441949134
ISBN 1441949135
Typ produktu Měkká vazba
Vydavatel Springer-Verlag New York Inc.
Datum vydání 8. prosince 2010
Stránky 162
Jazyk English
Rozměry 235 x 155
Země United States
Autoři Hamilton Howard J.; Hilderman Robert J.
Ilustrace XVIII, 162 p.
Edice Softcover reprint of hardcover 1st ed. 2001
Série Springer International Series in Engineering and Computer Science