p-Adic Valued Distributions in Mathematical Physics

p-Adic Valued Distributions in Mathematical Physics

AngličtinaMěkká vazbaTisk na objednávku
Khrennikov Andrei Y.
Springer
EAN: 9789048144761
Tisk na objednávku
Předpokládané dodání v pátek, 10. ledna 2025
2 633 Kč
Běžná cena: 2 925 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I· We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo· These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.
EAN 9789048144761
ISBN 9048144760
Typ produktu Měkká vazba
Vydavatel Springer
Datum vydání 3. prosince 2010
Stránky 264
Jazyk English
Rozměry 240 x 160
Země Netherlands
Autoři Khrennikov Andrei Y.
Ilustrace XVI, 264 p.
Edice Softcover reprint of hardcover 1st ed. 1994
Série Mathematics and Its Applications