Partial Identification of Probability Distributions

Partial Identification of Probability Distributions

AngličtinaMěkká vazbaTisk na objednávku
Manski Charles F.
Springer-Verlag New York Inc.
EAN: 9781441918253
Tisk na objednávku
Předpokládané dodání v pátek, 14. února 2025
3 686 Kč
Běžná cena: 4 096 Kč
Sleva 10 %
ks
Chcete tento titul ještě dnes?
knihkupectví Megabooks Praha Korunní
není dostupné
Librairie Francophone Praha Štěpánská
není dostupné
knihkupectví Megabooks Ostrava
není dostupné
knihkupectví Megabooks Olomouc
není dostupné
knihkupectví Megabooks Plzeň
není dostupné
knihkupectví Megabooks Brno
není dostupné
knihkupectví Megabooks Hradec Králové
není dostupné
knihkupectví Megabooks České Budějovice
není dostupné
knihkupectví Megabooks Liberec
není dostupné

Podrobné informace

Sample data alone never suffice to draw conclusions about populations. Inference always requires assumptions about the population and sampling process. Statistical theory has revealed much about how strength of assumptions affects the precision of point estimates, but has had much less to say about how it affects the identification of population parameters. Indeed, it has been commonplace to think of identification as a binary event – a parameter is either identified or not – and to view point identification as a precondition for inference. Yet there is enormous scope for fruitful inference using data and assumptions that partially identify population parameters. This book explains why and shows how. The book presents in a rigorous and thorough manner the main elements of Charles Manski's research on partial identification of probability distributions. One focus is prediction with missing outcome or covariate data. Another is decomposition of finite mixtures, with application to the analysis of contaminated sampling and ecological inference. A third major focus is the analysis of treatment response. Whatever the particular subject under study, the presentation follows a common path. The author first specifies the sampling process generating the available data and asks what may be learned about population parameters using the empirical evidence alone. He then ask how the (typically) setvalued identification regions for these parameters shrink if various assumptions are imposed. The approach to inference that runs throughout the book is deliberately conservative and thoroughly nonparametric.
EAN 9781441918253
ISBN 1441918256
Typ produktu Měkká vazba
Vydavatel Springer-Verlag New York Inc.
Datum vydání 14. prosince 2011
Stránky 179
Jazyk English
Rozměry 235 x 155
Země United States
Autoři Manski Charles F.
Ilustrace XII, 179 p. 1 illus.
Edice Softcover reprint of the original 1st ed. 2003
Série Springer Series in Statistics