Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

EnglishHardbackPrint on demand
Krainski, Elias
Taylor & Francis Ltd
EAN: 9781138369856
Print on demand
Delivery on Monday, 13. of January 2025
CZK 3,213
Common price CZK 3,570
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications.

This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications:

* Spatial and spatio-temporal models for continuous outcomes

* Analysis of spatial and spatio-temporal point patterns

* Coregionalization spatial and spatio-temporal models

* Measurement error spatial models

* Modeling preferential sampling

* Spatial and spatio-temporal models with physical barriers

* Survival analysis with spatial effects

* Dynamic space-time regression

* Spatial and spatio-temporal models for extremes

* Hurdle models with spatial effects

* Penalized Complexity priors for spatial models

All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book.

The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

EAN 9781138369856
ISBN 1138369853
Binding Hardback
Publisher Taylor & Francis Ltd
Publication date December 19, 2018
Pages 298
Language English
Dimensions 234 x 156
Country United Kingdom
Authors Bakka, Haakon; Castro-Camilo, Daniela; Gomez-Rubio, Virgilio; Krainski, Elias; Lenzi, Amanda; Lindgren Finn; Rue, Havard; Simpson Daniel