Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets

EnglishPaperback / softbackPrint on demand
Fernández, Alberto
Springer, Berlin
EAN: 9783030074463
Print on demand
Delivery on Wednesday, 7. of May 2025
CZK 3,949
Common price CZK 4,388
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

EAN 9783030074463
ISBN 3030074463
Binding Paperback / softback
Publisher Springer, Berlin
Publication date January 19, 2019
Pages 377
Language English
Dimensions 235 x 155
Country Switzerland
Readership General
Authors Fernandez, Alberto; Galar, Mikel; Garcia, Salvador; Herrera Francisco; Krawczyk, Bartosz; Prati, Ronaldo C.
Illustrations XVIII, 377 p. 71 illus., 50 illus. in color.
Edition Softcover Reprint of the Original 1st 2018 ed.
Manufacturer information
The manufacturer's contact information is currently not available online, we are working intensively on the axle. If you need information, write us on helpdesk@megabooks.sk, we will be happy to provide it.