Local Fields

Local Fields

EnglishHardback
Serre Jean-Pierre
Springer-Verlag New York Inc.
EAN: 9780387904245
On order
Delivery on Monday, 27. of January 2025
CZK 1,499
Common price CZK 1,666
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

The goal of this book is to present local class field theory from the cohomo­ logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho­ mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.
EAN 9780387904245
ISBN 0387904247
Binding Hardback
Publisher Springer-Verlag New York Inc.
Publication date January 19, 1980
Pages 241
Language English
Dimensions 235 x 155
Country United States
Readership Professional & Scholarly
Authors Serre Jean-Pierre
Illustrations VIII, 241 p. 62 illus.
Translators Greenberg Marvin J.
Series Graduate Texts in Mathematics