Konvektive Zellverfolgung durch auf tiefem Lernen basierende Computer Vision

Konvektive Zellverfolgung durch auf tiefem Lernen basierende Computer Vision

GermanPaperback / softback
Ranganayakulu, S. V.
Verlag Unser Wissen
EAN: 9786203309812
On order
Delivery on Monday, 10. of February 2025
CZK 1,023
Common price CZK 1,137
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

In der vorliegenden Studie wurde ein autonomer Algorithmus für die konvektive Zellidentifizierung und -verfolgung (CITRA) unter Verwendung von DWR-Reflexionsbildern entwickelt. Der CITRA-Algorithmus ist in Python unter Verwendung der Deep-Learning-Technik Neuronaler Netze implementiert. Die optische Zeichenerkennung wird in der vorliegenden Studie durch "Tesseract" verwendet, ein unbeaufsichtigtes, auf LSTM basierendes Modul für Neuronale Netze, das die eingangsdimensionale Pixelmatrix/das Eingangsbild analysiert und High-Level-Strings ausgibt. Der Algorithmus durchläuft die Pixelwerte des DWR-Reflexionsbildes und erkennt die Intensitäten der Pixel (>=30 dB) und segregiert die konvektiven Zellen zusammen mit anderen geschätzten Zelleigenschaften wie dem Schwerpunkt des Sturms, der abgedeckten Fläche, Entfernung und Richtung vom Radarzentrum. Die Leistung des CITRA-Algorithmus wurde an verschiedenen konvektiven Stürmen getestet und er konnte sie zusammen mit anderen physikalischen Eigenschaften der Konvektionszellen erfolgreich identifizieren und verfolgen. Darüber hinaus haben wir die potenzielle Anwendung des CITRA-Algorithmus auf die Entwicklung der im Radarbereich erkannten konvektiven Zellen demonstriert. Gegenwärtig nimmt der CITRA-Algorithmus nur Reflektivitätsbilder als einen einzigen Eingabeparameter auf.
EAN 9786203309812
ISBN 6203309818
Binding Paperback / softback
Publisher Verlag Unser Wissen
Publication date February 9, 2021
Pages 76
Language German
Dimensions 229 x 152 x 5
Readership General
Authors Niranjan, Akella; Ranganayakulu, S. V.; Subrahmanyam, K. V.