Support Vector Machine (SVM) Aggregation Modelling

Support Vector Machine (SVM) Aggregation Modelling

EnglishPaperback / softbackPrint on demand
Ali, Shahid
LAP Lambert Academic Publishing
EAN: 9786203841411
Print on demand
Delivery on Friday, 14. of February 2025
CZK 1,903
Common price CZK 2,114
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems. This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM. Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.

The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems.

This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM.

Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.

EAN 9786203841411
ISBN 6203841412
Binding Paperback / softback
Publisher LAP Lambert Academic Publishing
Pages 192
Language English
Dimensions 220 x 150
Authors Ali, Shahid