Deep Learning for Computer Architects

Deep Learning for Computer Architects

EnglishPaperback / softbackPrint on demand
Reagen, Brandon
Springer, Berlin
EAN: 9783031006289
Print on demand
Delivery on Monday, 27. of January 2025
CZK 1,448
Common price CZK 1,609
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware.

This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs.

The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

EAN 9783031006289
ISBN 3031006283
Binding Paperback / softback
Publisher Springer, Berlin
Publication date August 22, 2017
Pages 109
Language English
Dimensions 235 x 191
Country Switzerland
Readership Professional & Scholarly
Authors Adolf, Robert; Brooks, David; Reagen, Brandon; Wei Gu-Yeon; Whatmough, Paul
Illustrations XIV, 109 p.
Series Synthesis Lectures on Computer Architecture