Energy Efficient Computation Offloading in Mobile Edge Computing

Energy Efficient Computation Offloading in Mobile Edge Computing

EnglishHardbackPrint on demand
Chen Ying
Springer, Berlin
EAN: 9783031168215
Print on demand
Delivery on Monday, 27. of January 2025
CZK 3,949
Common price CZK 4,388
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices’ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce anend-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.
Researchers working in  mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.

 
EAN 9783031168215
ISBN 3031168216
Binding Hardback
Publisher Springer, Berlin
Publication date October 31, 2022
Pages 156
Language English
Dimensions 235 x 155
Country Switzerland
Readership Professional & Scholarly
Authors Chen Ying; Shen Sherman; Wu Yuan; Zhang Ning
Illustrations 38 Illustrations, black and white; XIV, 156 p. 38 illus.
Edition 1st ed. 2022
Series Wireless Networks