Implizite Runge-Kutta-Formeln

Implizite Runge-Kutta-Formeln

GermanPaperback / softback
Glasmacher, Werner
Vieweg+Teubner
EAN: 9783663063490
On order
Delivery on Monday, 10. of February 2025
CZK 1,354
Common price CZK 1,504
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Implizite RUNGE-KUTTA-Formeln wurden erstmals in einer Reihe von Arbeiten ([1], [2], [3]) von J. C. BUTCHER systematisch untersucht. Hierbei wurden ver schiedene Annahmen uber die Lage der n Stiitzstellen getroffen. Fur die behan delten Falle wurde die Fehlerordnung angegeben und der Beweis fUr die Ein deutigkeit des jeweiligen Verfahrens gefUhrt. Die Berechnung der Koeffizienten durch Auflosen der sie bestimmenden Gleichungssysteme wurde nur fUr n ~ 6 durchgefiihrt. Bis n = 11 wurden sie zahlenmaf3ig in [4] mit 20 Stellen hinter dem Komma angegeben. In [5] findet sich zwar ein Beweis, dan die impliziten RUNGE-KuTTA-Formeln mit der Stutzstellenverteilung nach GAUSS eine Fehlerordnung von 2 n + 1 haben, jedoch wird hier nichts uber die praktische Verwendbarkeit dieser Formeln im allgemeinen Falle gesagt. Das im folgenden angegebene Rechenverfahren fUr die Koeffizienten wurde auf der GAMM-Tagung in Wien 1965 [6] vorgetragen. Das Verfahren umgeht die von BUTCHER angewandte Methode der numerischen Losung eines linearen Gleichungssystems von n Gleichungen mit n rechten Seiten. Die hier entwickelte formelmaf3ige Beschreibung des Verfahrens fiihrt zu einer bequemen Ermittlung der inversen Matrix des Gleichungssystems. Damit ergibt sich eine betrachtliche Ersparnis an Rechenaufwand.
EAN 9783663063490
ISBN 3663063496
Binding Paperback / softback
Publisher Vieweg+Teubner
Publication date January 1, 1966
Pages 182
Language German
Dimensions 244 x 170
Country Germany
Readership General
Authors Glasmacher, Werner; Sommer, Dietmar
Illustrations 182 S.
Series Forschungsberichte des Landes Nordrhein-Westfalen