Unicity of Meromorphic Mappings

Unicity of Meromorphic Mappings

EnglishHardback
Pei-Chu Hu
Springer-Verlag New York Inc.
EAN: 9781402012198
On order
Delivery on Friday, 28. of February 2025
CZK 2,633
Common price CZK 2,925
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for­ mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func­ tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur­ 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
EAN 9781402012198
ISBN 1402012195
Binding Hardback
Publisher Springer-Verlag New York Inc.
Publication date April 30, 2003
Pages 467
Language English
Dimensions 240 x 160
Country United States
Readership Professional & Scholarly
Authors Pei-Chu Hu; Ping Li
Illustrations IX, 467 p.
Series Advances in Complex Analysis and Its Applications