Protective Relaying of Power Systems Using Mathematical Morphology

Protective Relaying of Power Systems Using Mathematical Morphology

EnglishPaperback / softbackPrint on demand
Wu, Q.H.
Springer London Ltd
EAN: 9781849968461
Print on demand
Delivery on Friday, 21. of February 2025
CZK 3,691
Common price CZK 4,101
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

The basic principle of protective relaying of power systems has not changed for more than half a century. Almost all power system protective relaying algorithms are dominated by integral transforms such as the Fourier transform and the wavelet transform. The integral transform can only provide an average attribute of the s- nals or their components. The accuracy of the attribute extraction is signi?cantly sacri?ced by the assumption of periodicity of the signals if the integral transform is appliedto transientsignals. Itis also wellknownthatthe signalsare liable to bec- taminatedbynoiseintheformofexponentiallydecayingDCoffsets,highfrequency transients, harmonic distortion, errors caused by non-linearityin the response of the sensors, and unwanted behaviour of power systems. This contamination is often provoked by fault conditions, just at the time when the protection relay is required to respond and trip the circuit breaker to limit damage caused by the fault. On the other hand, as we know, in most protection relays, complex computation has to be undertakenwithin a sampling interval, no matter how small the interval, to calculate the coef?cients relevantto the attributes of the signals byusing the integral transform based on a window of samples, and to calculate the relaying algorithms, which are derivedto representthe relationship betweenthese coef? cientsandpower system faults. If fast transients and high-order harmonics are to be addressed, - tra computing power and facilities are required. Therefore, it can be seen that the current power system relaying algorithms suffer from many problems including - curacy, fast responses, noise, disturbance rejections and reliability.
EAN 9781849968461
ISBN 1849968462
Binding Paperback / softback
Publisher Springer London Ltd
Publication date October 22, 2010
Pages 208
Language English
Dimensions 235 x 155
Country United Kingdom
Readership Professional & Scholarly
Authors Ji Tianyao; Lu Zhen; Wu, Q.H.
Illustrations XXII, 208 p.
Edition Softcover reprint of hardcover 1st ed. 2009
Series Power Systems