Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions

EnglishHardbackPrint on demand
Lapidus Michel L.
Springer-Verlag New York Inc.
EAN: 9781461421757
Print on demand
Delivery on Thursday, 15. of May 2025
CZK 3,686
Common price CZK 4,096
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.

Key Features of this Second Edition:

The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

The method of Diophantine approximation is used to study self-similar strings and flows

Analytical and geometric methodsare used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

Throughout, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions, Second Edition will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.

EAN 9781461421757
ISBN 1461421756
Binding Hardback
Publisher Springer-Verlag New York Inc.
Publication date September 20, 2012
Pages 570
Language English
Dimensions 235 x 155
Country United States
Authors Lapidus Michel L.; van Frankenhuijsen, Machiel
Illustrations XXVI, 570 p.
Edition 2nd ed. 2013
Series Springer Monographs in Mathematics
Manufacturer information
The manufacturer's contact information is currently not available online, we are working intensively on the axle. If you need information, write us on helpdesk@megabooks.sk, we will be happy to provide it.