Molecular Modeling and Prediction of Bioactivity

Molecular Modeling and Prediction of Bioactivity

EnglishPaperback / softbackPrint on demand
Springer-Verlag New York Inc.
EAN: 9781461368571
Print on demand
Delivery on Friday, 28. of February 2025
CZK 2,633
Common price CZK 2,925
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetration. For any set of compounds, these relationships are by necessity complicated, particularly when the properties are of biological nature. To investigate and utilize such complicated relationships, henceforth abbreviated SAR for structure-activity relationships, and QSAR for quantitative SAR, we need a description of the variation in chemical structure of relevant compounds and biological targets, good measures of the biological properties, and, of course, an ability to synthesize compounds of interest. In addition, we need reasonable ways to construct and express the relationships, i. e. , mathematical or other models, as well as ways to select the compounds to be investigated so that the resulting QSAR indeed is informative and useful for the stated purposes. In the present context, these purposes typically are the conceptual understanding of the SAR, and the ability to propose new compounds with improved property profiles. Here we discuss the two latter parts of the SARlQSAR problem, i. e. , reasonable ways to model the relationships, and how to select compounds to make the models as "good" as possible. The second is often called the problem of statistical experimental design, which in the present context we call statistical molecular design, SMD. 1.
EAN 9781461368571
ISBN 146136857X
Binding Paperback / softback
Publisher Springer-Verlag New York Inc.
Publication date November 5, 2012
Pages 502
Language English
Dimensions 235 x 155
Country United States
Readership Professional & Scholarly
Illustrations XVI, 502 p.
Editors Gundertofte Klaus; Jørgensen, Fleming Steen