Non-Euclidean Geometry

Non-Euclidean Geometry

EnglishPaperback / softback
Coxeter, H.S.M.
University of Toronto Press
EAN: 9781442639454
Available at distributor
Delivery on Tuesday, 21. of January 2025
CZK 1,142
Common price CZK 1,269
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

The name non-Euclidean was used by Gauss to describe a system of geometry which differs from Euclid's in its properties of parallelism. Such a system was developed independently by Bolyai in Hungary and Lobatschewsky in Russia, about 120 years ago. Another system, differing more radically from Euclid's, was suggested later by Riemann in Germany and Cayley in England. The subject was unified in 1871 by Klein, who gave the names of parabolic, hyperbolic, and elliptic to the respective systems of Euclid-Bolyai-Lobatschewsky, and Riemann-Cayley. Since then, a vast literature has accumulated.

The Fifth edition adds a new chapter, which includes a description of the two families of 'mid-lines' between two given lines, an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, a computation of the Gaussian curvature of the elliptic and hyperbolic planes, and a proof of Schlafli's remarkable formula for the differential of the volume of a tetrahedron.

EAN 9781442639454
ISBN 1442639458
Binding Paperback / softback
Publisher University of Toronto Press
Publication date December 15, 1965
Pages 326
Language English
Dimensions 229 x 152 x 20
Country Canada
Readership General
Authors COXETER, H.S.M.
Edition 5 ed
Series Heritage