Analysis of Spherical Symmetries in Euclidean Spaces

Analysis of Spherical Symmetries in Euclidean Spaces

EnglishHardback
Müller, Claus
Springer-Verlag New York Inc.
EAN: 9780387949499
On order
Delivery on Friday, 28. of February 2025
CZK 2,633
Common price CZK 2,925
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

This book gives a new and direct approach into the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of ar­ bitrary dimensions. Essential parts may even be called elementary because of the chosen techniques. The central topic is the presentation of spherical harmonics in a theory of invariants of the orthogonal group. H. Weyl was one of the first to point out that spherical harmonics must be more than a fortunate guess to simplify numerical computations in mathematical physics. His opinion arose from his occupation with quan­ tum mechanics and was supported by many physicists. These ideas are the leading theme throughout this treatise. When R. Richberg and I started this project we were surprised, how easy and elegant the general theory could be. One of the highlights of this book is the extension of the classical results of spherical harmonics into the complex. This is particularly important for the complexification of the Funk-Hecke formula, which is successfully used to introduce orthogonally invariant solutions of the reduced wave equation. The radial parts of these solutions are either Bessel or Hankel functions, which play an important role in the mathematical theory of acoustical and optical waves. These theories often require a detailed analysis of the asymptotic behavior of the solutions. The presented introduction of Bessel and Hankel functions yields directly the leading terms of the asymptotics. Approximations of higher order can be deduced.
EAN 9780387949499
ISBN 0387949496
Binding Hardback
Publisher Springer-Verlag New York Inc.
Publication date November 20, 1997
Pages 226
Language English
Dimensions 235 x 155
Country United States
Readership Professional & Scholarly
Authors Muller, Claus
Illustrations VIII, 226 p.
Edition 1998 ed.
Series Applied Mathematical Sciences